Biomolecular electrostatics and solvation: a computational perspective
نویسندگان
چکیده
منابع مشابه
Computational methods for biomolecular electrostatics.
An understanding of intermolecular interactions is essential for insight into how cells develop, operate, communicate, and control their activities. Such interactions include several components: contributions from linear, angular, and torsional forces in covalent bonds, van der waals forces, as well as electrostatics. Among the various components of molecular interactions, electrostatics are of...
متن کاملThe Geometry of Biomolecular Solvation
Years of research in biology have established that all cellular functions are deeply connected to the shape and dynamics of their molecular actors. As a response, structural molecular biology has emerged as a new line of experimental research focused on revealing the structure of biomolecules. The analysis of these structures has led to the development of computational biology, whose aim is to ...
متن کاملEfficient evaluation of binding free energy using continuum electrostatics solvation.
The linear interaction energy (LIE) method is combined with energy minimization and finite-difference Poisson calculation of electrostatic solvation for the estimation of the absolute free energy of binding. A predictive accuracy of about 1.0 kcal/mol is obtained for 13 and 29 inhibitors of beta-secretase (BACE) and HIV-1 protease (HIV-1 PR), respectively. The multiplicative coefficients for th...
متن کاملWork/Precision Tradeoffs in Continuum Models of Biomolecular Electrostatics
The structure and function of biological molecules are strongly influenced by the water and dissolved ions that surround them. This aqueous solution (solvent) exerts significant electrostatic forces in response to the biomolecule’s ubiquitous atomic charges and polar chemical groups. In this work, we investigate a simple approach to numerical calculation of this model using boundary-integral eq...
متن کاملHighly accurate biomolecular electrostatics in continuum dielectric environments
Implicit solvent models based on the Poisson-Boltzmann (PB) equation are frequently used to describe the interactions of a biomolecule with its dielectric continuum environment. A novel, highly accurate Poisson-Boltzmann solver is developed based on the matched interface and boundary (MIB) method, which rigorously enforces the continuity conditions of both the electrostatic potential and its fl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Quarterly Reviews of Biophysics
سال: 2012
ISSN: 0033-5835,1469-8994
DOI: 10.1017/s003358351200011x